General Relativity and Black Holes – Week 4

Gustav Holzegel

November 3, 2021

1 Exercises

1. Let (M, g) be a Lorentzian manifold and $p, q \in M$ with $q \in I^+(p)$. Denote by $\Omega(p, q)$ the set of smooth timelike curves γ from p to q. Recall the length functional for timelike curves $\gamma: [a, b] \to M$ with $\gamma(a) = p$ and $\gamma(b) = q$ given by

$$L[\gamma] = \int_{a}^{b} \sqrt{-g(\dot{\gamma}(\tau), \dot{\gamma}(\tau))} d\tau.$$

Define also the energy functional

$$E[\gamma] = \int_a^b -g(\dot{\gamma}(\tau), \dot{\gamma}(\tau))d\tau.$$

- (a) Show that the critical points of $E[\gamma]$ as a functional over $\Omega(p,q)$ are precisely the timelike geodesics between p and q. HINT: Compute the Euler-Lagrange equations of the functional. You may use the results of the discussion later in this sheet.
- (b) Show that γ is a critical point of $E[\gamma]$ if and only if γ is a critical point of $L[\gamma]$ and is parameterised by a parameter proportional to proper time.

Discussion: What happens for null geodesics? What happens for spacelike geodesics? Background: Computing the Euler-Lagrange equations for the functional $E[\gamma]$ is often an efficient way to compute geodesics. It can even be an efficient way to compute Christoffel symbols by reading them off from the resulting equations.

2. (a) Let $\gamma: I \to M$ be a curve whose tangent vector X satisfies the condition

$$\nabla_X X = \alpha(t) X$$

for some function $\alpha: I \to \mathbb{R}$. Show that there exists some reparametrization $t \to f(t)$ such that $\gamma \circ f$ is a geodesic in a suitable domain.

- (b) Consider a geodesic curve $\gamma: I \to M$. Prove that, given the affine (re)parametrization t' = at + b, then $\gamma(t')$, taken with the appropriate domain, is also a geodesic.
- (c) Prove directly the following claim made in lectures for (1+n)-dimensional Minkowski space: If $q \in I^+(p)$, then there exists a unique maximising geodesic, up to affine reparametrization, from p to q.
- 3. Consider the manifold $\mathbb{R}_t \times \mathbb{R}_r$ equipped with the Lorentzian metric

$$g = -(1+r^2)dt^2 + \frac{1}{1+r^2}dr^2.$$

(a) Show that the manifold is timelike geodesically complete, i.e. all inextendible 1 timelike geodesics can be defined on all of \mathbb{R} .

¹A curve $\gamma: I \to M$ is called *inextendible* if it is not the restriction of a curve $\Gamma: J \to M$ with $I \subset J$ properly.

(b) Show that given $p \in M$, there exist $q \in I^+(p)$ such that there is no timelike geodesic connecting p and q.

Background 1: A corollary of the Hopf-Rinow theorem in *Riemannian* geometry implies that if (M, g) is geodesically complete, then any two points can be connected by a minimizing geodesic.

Background 2: The above metric is the two-dimensional anti-de Sitter metric.

- 4. We seek to characterize the relationship between curvature and the tendency of geodesics to accelerate toward and away from each other. Specifically, we define a smooth one-parameter family of geodesics $\gamma_s: I \to M$ such that the map $(t,s) \to \gamma_s(t)$ is a diffeomorphism onto its image). Define the vectors $T = \begin{bmatrix} \frac{\partial}{\partial t} \end{bmatrix}, X = \begin{bmatrix} \frac{\partial}{\partial s} \end{bmatrix}$ (where, for each p, we define $\begin{bmatrix} \frac{\partial}{\partial t} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial t} \end{bmatrix}_p, \begin{bmatrix} \frac{\partial}{\partial s} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial s} \end{bmatrix}_p$).
 - (a) Show that there exists a reparametrization $t \to t'(t,s)$ (with corresponding T') such that g(T',T') is constant for all (t',s).
 - (b) Show that there exists a new reparametrization $t' \to t''$ such that, in these coordinates, g(T'', X) = 0 for all (t'', s) (hint: use the fact that [T'', X] = 0).
 - (c) We define the acceleration a with respect to the displacement X to be

$$a = \nabla_T \nabla_T X.$$

Prove that the geodesic deviation equation

$$a^e = -R^e_{abd}X^bT^cT^d$$

holds.

Heuristically, X represents the displacement to an infinitesimally close geodesic. Then, if the right hand side is nonzero, members of γ_s are accelerating towards or away from each other.

2 Problems and Discussion

1. **Discussion:** A brief review of variational methods: We consider a curve $\gamma : [a, b] \to M$ with the constraint that, for some points $p, q \in M$, $\gamma(a) = p$, $\gamma(b) = q$. Consider a *Lagrangian*, defined to be a smooth function

$$F: [a,b] \times TM \to \mathbb{R}.$$

Here TM is the tangent bundle on M,

$$TM = \{(p, S) \mid p \in M, S \in T_pM\}.$$

We define the action functional

$$S[\gamma] = \int_a^b F(t, \gamma(t), \dot{\gamma}(t)) dt$$

acting on curves. Then, a given curve γ is a critical point of S if, for a given coordinate chart, γ satisfies the Euler-Lagrange equations,

$$\frac{\partial F}{\partial \gamma^i}(t,\gamma(t),\dot{\gamma}(t)) - \frac{d}{dt}\frac{\partial F}{\partial \dot{\gamma}^i}(t,\gamma(t),\dot{\gamma}(t)) = 0,$$

for all i.

2. Problem: Existence of compact Lorentzian manifolds which are not geodesically complete: We consider the manifold $M = \mathbb{R}^2 - (0,0)$, endowed with the metric

$$ds^2 = \frac{2}{u^2 + v^2} du \, dv.$$

- (a) Verify that this is a Lorentzian manifold, and that the transformation $(u, v) \to (cu, cv)$ is an isometry for all $c \neq 0$.
- (b) Consider the group of isometries $\Gamma = \{(u,v) \to (2^k u, 2^k v)\}$, for $k \in \mathbb{Z}$. Show that $T = M/\Gamma$ is a compact Lorentzian manifold (i.e. take the manifold M subject to the identification $(u,v) \sim (2u,2v)$).
- (c) Write down the geodesic equation and show that there exists a inextendible geodesic $\gamma: I \to T$ with $I \subsetneq \mathbb{R}$. (Hint: consider geodesics on M with v=0). Consequently, T is not geodesically complete.